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I. Introduction

The issue of estimating the parameters of non-Gaussian autoregressive (AR)

processes has received significant consideration in recent years [Martin 19821, [Kay

and Sengupta 1986, A]. These processes are modeled by an all-pole filter excited by

zero-mean white noise, also called the driving noise, which may be non-Gaussian.

In many applications, however, the driving noise can not be assumed to have zero

mean. As an example, it may be necessary to process a deterministic signal con-

taminated by non-Gaussian noise after both the signal and the noise have passed

through a channel. A method to estimate the parameters of a non-Gaussian non-

zero mean AR process may be an useful tool for such processing. Another problem

of interest is the estimation of the parameters of a zero-mean AR process when a

combination of deterministic signals of unknown amplitude is added to it before it

is observed. This paper suggests a generalization of an estimation technique pro-

posed earlier [Kay and Sengupta 1987, Lee 1987] in order to make it applicable

to both the non-zero mean processes described above. Essentially it is a two stage

procedure based on an approximation of the maximum likelihood estimator (MLE).

The resulting estimator is asymptotically efficient in the sense that its covariance

matrix approaches the Fisher information matrix for large data records.

The paper is organized as follows. The Cramer-Rao bound for the parameters of

each model is presented in Section H. Section II develops the two-stage least squares

(LS) estimator for these parameters. In Section IV this method is applied to the

problem of detecting a signal known except for amplitude in the presence of colored

non-Gaussian noise using a generalized likelihood ratio test (GLRT). Although the

GLRT is known to have nice asymptotic properties, it could not be used for this

problem before due to the unavailability of a reasonably good estimation technique.

Section V presents the results of computer simulation of the performance of the two-

stage LS estimator. The performance of the GLRT detector for a typical detection

problem is also simulated. Section VI summarizes the results.

II. Cramer-Rao Bounds

Consider N observations of the following non-zero mean AR(p) processes

P

Xn = -ZajXn., + V + Un(1)
j=1

2
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P

X- - aj(Xn._ - _ TSn,)- U, (2)

where the driving noise un has a zero-mean PDF f(un) with variance a2 and {sn}=

{[ ,1) ) .. )]T} is a known sequence of vectors of order q. V = [V V ... Vq]

and IT = I, A2 ... jiqj are the vectors of coefficients of sn in models (1) and (2),

respectively. f is assumed to be a symmetric function of un. It is also assumed

that f has tails heavier than a Gaussian PDF having equal variance. This is char-

acterized by the presence of impulses in the driving noise time series. (1) represents

an AR process where a deterministic mean is added to the otherwise zero-mean

driving noise (see Figure 1(a)). This model is also useful in some system identifi-

cation problems [Eykhoff 1974]. (2) represents a zero-mean AR processes to which

a deterministic signal has been added before it is observed (see Figure 1(b)). It is

easy to observe that if s( is a geometric sequence

n = (3)

for i = 1, 2,, q, then (2) takes the form of (1) with

Vi - A 1+ E air , i 1,2,.,q (4)

where ao is defined to be unity. This is not surprising, since (3) is the well-known

eigenfunction of a linear shift invariant (LSI) filter. It can be shown that (3) is

the only possible form of :(') for which there is direct correspondence between the

elements of v and ps. This special case includes real and complex exponentials, dc

signals[Anderson 1971] and alternating signals. It can be generalized to the case of

pairwise correspondence between the elements of v and 1 as follows. Consider for
q=2

s( ' ) = r ' cos(nw)
s(2) = r' sin(nw)

It follows that (2) is equivalent to (1) with

v/1 ' r-j cos(jw) =°r-I sin(j) (6)

V2 =or  sin(jw) (w)) ( )
This special case is useful in representing damped or undamped sinusoids with

arbitrary phase. In general, s,n may be composed of a combination of functions of
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the form (3) and (5) in order to make (2) equivalent to (1). The importance of this

equivalence will be apparent later.

The joint PDF of process (1) is given by

f.(x) fe(x)fp(x) (7)

where

N p

f,(x) = 1 f -ajx,_j - s)

fp (X) = f. (X1, X2, ,zP)

The information matrix for the parameter vector # can be shown to be

I= -E an "f(x) -E [a )
L apa#Tj a,

: E [E[ (8)
,=+1La

The second term accounts for the information from the first p samples while the

first term corresponds to the information from all subsequent samples up to N. For

large sample size the second term may be neglected. Defining the parameter vector

as

= [VT a T a2]T (9)

where a = [a1 a2 "'" aplT, it is shown in the Appendix that

iSTS -IfSTM Oq
. .. .. . . .. ... ...

.I= _IfMTS If [(N - p)C + MTMI 0P (10)

q "P (N - p)I,2

-- - wm m~'m 'gmii mmmii m mmm mml ml mm Nl lmlm 
m m
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where
If = E -9 Inf(u)

I12 = I E [u lnf(u)] - ]

S= S() ... S(q)

sWi W (( o i ) T
= 1N... = 1,2,.. q

'mN-1 raN-2 ""mN-p

C is the p x p covariance matrix of the time series (1) and the sequence {m1,m 2 ,

,rn} is the mean of the time series (1). They satisfy the recursion

P
mn= ajMn-j (+V)

j=1

which is the output of the filter excited by the signal {Tsn}. The Cramer-Rao lower

bounds for the parameters are obtained from the inverse of (10) (see Appendix).

Cov(i') 1 [S [ I + Mn[(N - p)Cn]-MnTI-' S] (12a)

Cov(i) or 1 [(N - P)Cn + MnT[ Sn(Sn Sn)iST n (12b)

Var(6 2 ) ( 1 (12c)

The subscript n denotes normalization of the corresponding quantities by a. The

matrix inequalities (12a) and (12b) indicate that the difference of the left and right

hand side matrices are nonnegative definite.

Since the matrix Mn[(N - p)Cn]'-Mn Tis positive definite, the right hand

side of (12a) approaches its minimum value of [a2IfSnSn - 1 when M, is close

to zero. This requires the spectrums of the signals {sn$)}, i = 1,2,...,q to have

a mismatch with the noise power spectral density (PSD). The lack of knowledge

of the AR filter parameters always makes it more difficult to estimate v. Note
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that the special case of singular S, TS,, has been ignored. This can happen if and

only if the columns of S, are linearly dependent and consequently V is not entirely

observable. A suitable reduction in the size of v is required to avoid this situation.

The matrix (I - S (nS )-S) on the right hand side of (12b) .is idempotent.

Therefore it is nonnegative definite and serves to reduce the CR bound by using the

additional information about the AR filter parameters carried by the signal. The

task of designing a suitable "probing" signal to extract a large amount of information

about a is a problem of system identification (Eykhoff 19741. Finally the quantity

a2 If is known to achieve its minimum value of unity only in the case of a Gaussian

PDF [Sengupta and Kay 1986, A]. Hence v and a may be estimated more precisely

in the case of a non-Gaussian PDF of the driving noise than in the Gaussian case.

The quantity a 2If depends on the shape of the PDF and is a quantitative measure

of the expected improvement over the Gaussian case. To show the scale-invariance

of a 2 If define g to be the PDF of the normalized random variable i = u/a,

g(il)= af (U)

then 0 2 I 2[f (u)] du

lg fu)l

-21 1 du

a ¢ 2 f (g adi

= a2j (g'()1 2  d
0 0  (f

which does not depend on the variance of u. Hence a 2If depends only on the shape

of the PDF and is unaffected by scaling.

The joint PDF of process (2) also has the form (7) where

N

f (x) = f aj(x n i -y -- rs y )
n=p+l(



The approximate information matrix (ignoring the contribution from the first p

samples) for the parameter vector

&T aT a2 1T (13)

was derived by Martin [1982] for the special case q = 1 and sy') 1 V n and by

the authors [Kay and Sengupta 1986, B] for the case q = 1, s$n arbitrary. The

generalization to the case q > 1 can be easily shown to be

fvTv OxqT Oq

o.. . , . ... . . .. . .

IO= 0 pxq (N- p)IjC OP (14)

Or  " OT"(N- p)I,2

0 where
V= [v(1) V (2) 

.. vq)]

v~i V (t) 1, (i) ] ()I . 1 1
P+ p+2 N '(i) T s=i

n - ais'j,, n=p+l,p+2,...N

j=0

The CR bounds are immediately obtained as

Cov(it) - -(VTVf (15a)

Cov(i) 1 1 C -1  (15b)
(N -p)a'If1

Var(&2 ) 1 ( (15c)
(N -p)1ff2

n once again denotes normalization. The lower bound on Cov(A) is small if V,"

is large. This can be accomplished if there is a significant mismatch between the

-- spectrums of the signal components {s$)}, i = 1,2,.. ,q and the noise power

spectral density (PSD) (see the definition of V in (14)). Higher signal amplitudes

do not help reduce the CR bound. The lower bound on Cov(A) is independent of

the shape of the signal. Both Cov(j) and Cov(i) have smaller lower bounds in the

case of non-Gaussian PDF than in the Gaussian case and the difference is given by

the factor o 2 If as before.
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It is clear from (12b) and (15b) that the CR bound for i is lower in the case of

model (1) than that of model (2). It is now shown that if (3) holds then the bound

(12b) attains its maximum value given by (15b). Substitution of (3) in (11) yields

P q p q

ajrn- = - vrj = aj (ZEir,-)
j= i=1 '=0(=

q

q

Zr
1=1

which belongs to the column space of S. Hence

MT[I - S(STS)-lSTIM = 0

and consequently (12b) and (15b) are equivalent. This result has nice intuitive

justification, since the models (1) and (2) become equivalent when (3) holds.

III. The MLE and its Approximation

From (5) the log-likelihood function for process (1) is given by

lnf×(x) = E Inf ,_.- -+ Infp (x)

n=p+l 1

The second term is ignored for the purpose of simplicity of maximization over the

4 parameters. The remaining term is the well-known conditional likelihood function

[Box and Jenkins 19701. The MLE of 0 is approximately a solution of

+ nf ain, - i~s) = 0

8
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Carrying out the differentiation with respect to vi,

N (9 .( )
(9 1 n = : 0. =ai=,,, -V- On

n=p+

N Z ()fP(Un)

k~ r~pl = l 0~~

N

=0

q N

n=p+l

where
w e r(u)= f'(U) (17)

Differentiation with respect to a2 results
N N xn jf'(U)E 9aInSf(u,,.) L= a= "-Ja E f(-)

n=p+l J =/_joa nf- n=p+l

N

E -ZXn-jUnr(u,)

n=p+l

-0, j=1,2,-,p

q , N S X, j (U )) + Z a j ( zN t n r (U n ))L.. " - E n'o;(° +E o  E -,;i,,X
k=1 n=p+l j=1 kn=p+l/

• N
=- X nXnr(Un), i = (,2,1.., (18)

n=p+l

Differentiation with respect to a 2 requires one to define a scaled version of f

g(t) = af(at) (19)

9



so that g has unity variance. It follows that

Z ao-- In fs(-')
n=p+l -S

2a 2 E , + 1

--- N [ ,(Un) _,1j ,

+- U ) _LTS

- (N - p) P=N

=0

N Z u'2(nr ) = 1 (20)I.., Nv - p.= + (U) = P o,, n._,_<, ,

For most PDF's r(u,) is a complicated function of a2 . If all the other parameters

are known, a - can be evaluated frcm (20) by a numerical search. In the case of a

Gaussian PDF it has been shown that 1(u) = 1/a 2 V u [Kay and Sengupta 1986,

Al. Therefore (20) reduces to the familiar form

N-p _ ( axnj - (21)N ,=p+ j=

which is just the averaged sum of the residuals. In this case (16) and (18) reduce

to the linear equations

q /N \ p / N N

1/ Z (0 ) (k)) (-Za (-W
k= 1 n=p+1 n = 1 n=p I / n X

i=1,2,...,q

q ( N P (N N

k=1 n=p+l "=i )n=p+1 n=p+l

10



In the matrix form

(()rs (j)  ... S (1) Ts(q) • _s(,)Tx, .. .S P)x '

S(q)TS(1) S (q)TSq) (Vq q)T x  . .(q)TxP 1q

TxS(')XSq) Tx Tf a,-xisl ... zxi, " x1x ... xix ,XP

ap

x s(1) ... . s( ) x T x J ... Tx( 
a

s( q )TXO

... (22)
T-xi XO

where

Xj [Xp-+1 Xp--j+2 " -XNI-j]T, j = 0,1,''',p

This is a generalization [Anderson 19711 of the covariance method of linear prediction

which includes the estimation of v along with that of a. The matrix on the left

hand side can be easily shown to be positive definite with probability 1. (22) has

a unique solution which is obtained in O(p2 ) operations. The estimates of v and a

can be us,' 4- -4 +he MLE of a2 from (21).

In the general non-Gaussian case the equations (16) and (18) are highly nonlin-

ear, since u, is a linear function of v and a and F is usually a complicated function.

The form of these equations resemble those of efficiency robust M-estimators [Huber

1981] for which r is chosen suitably to minimize the dependence of the efficiency of

the estimator on the PDF [Martin 1979], [Lee 1987]. If, however, F is as defined in

(17) and u, is computed using some fixed and approximate value of v and a, both

11



the equations become linear. In the matrix form they can be written as

S(q)Tr(1) ... ( ) r(q) rs( ) x

sxTrs() ... s~xfrs(w) xfrx ... s('rxP V1

-xrs(1) ... ?Trs) " Trx, ..- xrxp Vq

ap

-x T... ._ s q Tr, .. ~x

S(1)rrx o

s (q) r rxo

- ... (23)

-xTrxo

-xTrxo

where r= diag{r(p+ i),r(ftp+2 ),.. ,r(aN)} and

p

fin = Xn + Lixn ji,- sn, n =p + 1,p + 2,...,N (24)
j=1

which uses fixed and approximate values of vi and a obtained from an initial stage of

unweighted LS given by (22). (23) can be interpreted as the solution to the weighted

least squares (LS) problem

N 
p

mi E, X + L jn - L'~nr(an) (25)
n=p+l ~

The solution to (23) is expected to be much better than the unweighted LS esti-

mators, such as the covariance estimator, which implicitly assumes the underlying

PDF to be Gaussian. X is a symmetric (p + 1) x (p + 1) matrix which is positive

definite with probability 1. To show this write X as

X = IsM s (2) ... s(q) x1 x2 ... xp)Trls( l ) S(2) s(q) x1 X ... XP)

12



F(u) is positive for all the symmetric PDF's which are monotonically nonincreasing

functions of positive values of u. This mild condition makes sure that the matrix r

has positive diagonal elements. If b = [bo b, "" bp+q]T is a vector of real numbers

then bTXb is the squared norm of the random vector

r 1/2( 1) S( 2)  ... s ( q) xi x2 ... xp]b

and must be greater than zero with probability 1. Since X is positive definite, (25)

has a unique solution. Further simplification can be made by approximating r by a

simpler function whenever it is complicated [Kay and Sengupta 1986, A]. a'2 can be

estimated from (20) after v and a are determined. Alternatively, a coarse estimate

of a 2 can be obtained by substituting P, and l in (21). The suggested method is

an extension of the two-stage LS estimator proposed in an earlier paper [Kay and

Sengupta 19871.

The log-likelihood function for process (2) is given by

N

In f&(x) = I: In f ( a(x,-j - Tsn-j ) + Infp(x)
n=p+l "=

The second term is ignored, as before, leaving the conditional likelihood function.

The MLE of IF is approximately a solution of

a NA
l Inf ( ai(Xn_ -AT ) = 0

Differentiation with respect to a2 yields an equation similar to (20)
N

nu =n1 (26)
N - P,__p+I u,= - 0(z-i's--.)

Differentiation with respect to i and a, however, does not give rise to convenient

forms like (16) and (18). In the special cases of (3) and (5) this process reduces to

process (1). With the reparameterizations (4) and (6) one can proceed to estimate

v and a using the estimation scheme discussed above. A can then be computed

from the inverse mapping of (4) and (6). Finally, &2 is obtained by substituting

estimates of p and a in (26).

13
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Thus the two-stage LS estimator offers an elegant method of estimating the AR

filter parameters and the driving noise variance along with the signal parameter v

for model (1). Any combination of signal shapes can be used as long as they are

linearly independent. In the case of model (2) the applicability of the proposed

technique is restricted to special signal shapes. This underscores the significance of

the shapes described by (3) and (5), which include finite combination of sinusoids,

exponentials and dc signals. The following section illustrates how the two-stage

LS estimator can be used for the detection of such useful signals in .nonwhite non-

Gaussian noise.

IV. Application to Optimal Detection

Two detection problems will be discussed in this section. The first problem is

to detect whether a signal is present when the noise as well as the signal, if any, has

passed through a channel. If the unknown channel is modeled by an AR filter, the

detection problem can be formulated as a test of the following hypotheses.

p

1o :X = -- ajxn, + u,

P (27)
M :X, = - ajx,-i + n +, V7'S,

j= 1

(see Figure 1(a)). The noise u,, is assumed to have an even PDF known except for

its variance a 2 . The sequence of vector signals {s,,} is assumed to be known except

for its amplitude V.

The second problem is to decide whether a signal is present in the presence of

colored ambient noise [Kay and Sengupta 1986, B1. The signal shape is assumed to

be known at the point of observation irrespective of the PSD of the noise. This is

in contrast to the first problem where the signal goes through the same unknown

process of colorization as the noise before it is observed. If the noise PSD is described

by an AR model, the second problem is to choose between the hypotheses

p

o: = +aX,-j + Un

j=1 P (28)

Xn TSn - Eay(xn-i 14T n) + U,

14



(see Figure 1(b)). The same assumptions about the driving noise are made. The

signal is assumed to be known except for its amplitude i. Note that the time series

equations for the two problems under M, are identical to (1) and (2), respectively.

(27) and (28) together represent a large class of problems. The unknown set of

parameters a allows for the unknown correlation pattern of the noise. The PDF f

of u, can be chosen to characterize specific problems in a realistic way. Finally, by

allowing the amplitude of the signal to be unknown, the detector is expected to be

tolerant to different attenuations and phase changes of different components of the

signal.

The above two problems can be recast as

=[OT efl)1:OT =[0T Oq] 
(29)M T= [O OTo0

where 0t = [aT a2]T , 9q = v in problem (27) and 0q = i in problem (28). In either

case the dimensions of Ot and 0q are t = p+ 1 and q, respectively. The two problems

will be discussed side by side because of their close resemblence. It is well known

that there is no uniformly most powerful (UMP) test for (29). Yet the generalized

likelihood ratio test (GLRT) is widely preferred because of its nice asymptotic (large

sample size) properties such as consistency, unbiasedness and constant false alarm

rate (CFAR). It is also called the uniformly most powerful invariant (UMPI) test

since it exhibits the UMP property among the class of tests which are invariant to

a natural set of transformations [Lehmann 1959]. The asymptotic performance of

the GLRT becomes equivalent to that of a clairvoyant GLRT (i.e., the test with

perfectly known values of 9t) under the condition [Kendall and Stuart 1979]

10Ot(0,80 = E[ ( lnf (x;9q,'O) (alnf.(x;OiOt) )] 0 (30)y~ ~ e =0 0 30

10q , (Oq, t) is identically zero for problem (28) (see (14)). From (10) it is apparent

that (30) holds for problem (27) as well. Hence for both the problems the GLRT

can be said to be asymptotically optimal in the sense that for large sample size the

knowledge of a and a', the so-caled nuisance parameters, would not improve the

performance.

The GLRT for testing (29) is to decide M1 if

eG= C(8q,0e) > q (31)

'C(0, 80

15



for some threshold -y, where L is the likelihood function

L (q, et) = fx(x; Oq,Gt)

)t is the MLE of Ot assuming -o is true while 0q and Ot are joint MLE's of Oq and

Ot assuming M, is true. et is found by maximizing C(0, Ot) over Ot. Similarly, 0q, Ot

are obtained by maximizing £(Oq, t) over eq and et.
The statistics of eG, the likelihood ratio, are difficult to obtain in general. For

large data records (asymptotically) it may be shown that .In &_ is distributed in

the following manner [Kendall and Stuart 19791.

2 In tc - Xq under Mo (32a)

2lneG - X'2 (qA) under M1 (32b)

Here Xq represents a chi-square distribution with q degrees of freedom and X'2 (q, A)

represents a noncentral chi-square distribution with q degrees of freedom and non-

centrality parameter A. Note that X'2(q, 0) = X2 or the distribution under )o is a

special case of the distribution under M1 and occurs when A = 0. If (30) holds, the

noncentrality parameter A, which is a measure of the discrimination between the

two hypotheses, is given by

'X= OT Toet e~eE[(a In fx(x; Oq, et alInfx(x;0, Ot ) T]q 1 8q(,O)]O qaeq aeq q=0Oq
(33)

where Oq, Ot are the true values. The probability of deciding M, when Mo is true

(also called the probability of false alarm) is given by

PFA = Pr{2InGc > -t'jlo} (34a)

where -I' = 2 In -f. The probability of correctly deciding M, (called the power of the

test) is

PD = Pr{21n &g > -y'IMI (34b)

In practice, -f' can be set to produce a given false alarm rate and PD can be

calculated from (34b) accordingly.

16



The likelihood ratio for problems (27) and (28) have the common form (see
I (7))

fx(x; Oq, Ot) fc(x; Oq, Ot) fp(x; Oq, 0t)

fx(X;0, at) fc(x; 0, t) fp(x;0,Ut)

The second factor is dropped for ease of computation. A heuristic justification for

ignoring the second term is that its contribution to tG will be negligible when N is

large and the two hypotheses are close to each other. With this simplification, the

test is equivalent to deciding M1 if

2Inec = lnf,(x; Oq, t) - Inf(x;0, Ot) > ^' (35)

Specifically for problem (27),

N

n=pq-1 j~p

N (p

-E Inf I:'._j;.. (36a)
In=p+l f =

and for problem (28),

- : Inf Lai,,_; &2 (366)

Hats and double hats once again indicate MLE's under )lo and M1, respectively. ao

and &0 are both defined to be unity. Figures 2(a) and 2(b) are block diagrams of

(36a) and (36b), respectively. In the Gaussian case lnf is a simple quadratic and

the above test Statistics reduces to

2In c = (N- P)lIn.) (37a)

with

12 N

1 F= (L-- - a jx , _

S N-p E I ajzn - V Sn

-Y+ ,i=o1

17



for problem (27) and

21neG = (N - p) In (& ) (37b)

with
2

&2 ajXn-j

n= p+1 =

2

n=p+ 1

for problem (28).

In order to compute the probabilities of false alarm and detection from (34), it

is necessary to evaluate the noncentrality parameter. For problem (27) it is obtained

from (33) and (10) as

- 1,TTSJ 2s = sso[a2I] (38)

where so = S, is the vector of signal sequence including the amplitude. The

noncentrality parameter for problem (28) is obtained from (33) and (14).

= Irpf z Ap (AS)T(AS)p[a 2 I1 ]

where A is the (N - p) x (N - p) Toeplitz matrix

1 0 .... .... ... ... 0

a,

0 . . .
• ~A = ap ". "

* . . • .

0 . 0 ap ... a, 1

Therefore
A = PTST(ATA)SP(1a2f = sT R-soa2

1 (30 [a (39)

where so Sjt and R = a2 (ATA) - 1 is approximately the (N - p) x (N - p)

covariance matrix of the noise. so R-Iso is the signal to noise ratio (SNR) at the
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output of a prewhitener built with perfect knowledge of the filter parameter a. To

be more precise, if the data is passed through an ideal whitener (a filter which will

completely whiten the noise), then s0TR'so is the ratio of the energy contributions

from the signal and noise parts of the whitener output. The same interpretation

holds for soso/a 2 in (38) for the problem (27). In either case A is proportional to

the SNR at the output of a perfect prewhitener and correlator. From (39) it was

shown earlier [Kay and Sengupta 1986, B] that the probability of detection, which

is a monotonically increasing function of A, can be improved in the case of problem

(28) by choosing the signal to be one sinusoid along the direction of the weakest

noise eigenvector, if any such knowledge is available at all. On the other hand the

performance would deteriorate if the spectrum of the signal (so) matches the noise

PSD. From (38) it is clear, however, that problem (27) offers t.o such flexibility.

This makes intuitive sense, since both the signal and the noise pass through the

same filter. The factor aIf indicates the expected amount of reduction in the SNR

required to achieve a given probability of detection for a non-Gaussian noise PDF

over a Gaussian PDF.

In order to implement the GLRT detectors (36a) and (36b) it is necessary to

compute the MIEs of the unknown parameters under each hypothesis. Alterna-

tively, the two-stage LS estimator described in the previous section could be used

as an approximation to the MLEs. The simpler version of the estimator for esti-

mation under )1o was presented in an earlier paper [Kay and Sengupta 1987]. The

extension provided in this paper allows one to choose any signal shape for (27),

while only sinusoids, exponentials or dc signals, which satisfy (3) or (5), can be

used in the case of problem (28). Computationally simpler approximations of the

GLRT such as the Rao efficient score test [Rao 1973] can be used for more general

signal shapes in (28). Under the asssumption of large sample size and weak signal

the Rao statistic eR is equivalent to 2 In tG. When (30) holds, the Rao statistic for

testing (29) is

tit I nq(, bt) 1 (0, t) [ n Z (in £(Oi_ (90 In q I, 9e

The Rao statistic uses MLEs under the null hypothesis only. In the case of problem

(27) eR can be shown to be

eR = TS [STS] - ST h (40)
If



where

h= '(iZp+1)/f(1 p+1) f'(flp+2)/f(?Ip+2) ... f'(7N)/f (iN)] T

p

un = EajX,_j,  n=p+1,p+2,*..,N
j=O

In the case of problem (28) tR reduces to

1R =!hT V [VTV] - I V T I

R = -1i v [h (41)
If.

with h and i, as defined above. In general V will be a function of A. In the special

case of (3) it is observed that V = SD with

D = diag ijr-j, E jr, ., I jr j

\j=o j=o j=0

Consequently (41) is equivalent to (40). The equivalence holds by a similar argu-

ment in the special case of (5) and in general for all signals which are composed of

exponentials, damped and undamped sinusoids and dc. The two-stage LS estima-

tor of a in the zero-mean case [Kay and Sengupta 1987] may be used in (40) and

(41) instead of its NMILE. Exclusion of the MILEs under M1 makes the Rao detector

attractive from the estimation point of view. However its performance is expected

to be worse than that of the GLRT detector for short sample sizes and large signal

amplitudes, since the former involves more optimistic approxiiiuations.

V. Simulation of Performance

Two non-zero mean AR(4) processes of the form (2) were chosen for computer

simulations. The AR filter parameters for the processes [Kay and Sengupta 1986,A]

are given in Table A. Process I is broadband while process II is narrowband. A single

signal component (q = 1) with amplitude it = 0.1 was used. The known part of the

signal was chosen to be

Sn = (-1)" (42)

for n = 1,2,. . , N. This is of the form (3) and therefore the process can be

described by (1) as well. The equivalent values of v corresponding to the processes
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I and II are 0.4592 and 1.1147, respectively. The driving noise was assumed to be

mixed-Gaussian with PDF

f(u) = (1 - ,E)GB(U) + EGI(u) (43)

where GB(u) and Gr(u) are zero-mean Gaussian PDFs with variance a% and a ,

respectively. The mixture parameter E is a number between 0 and 1 and determines

the composition of the PDF. With the assumption a. >> a, (43) represents a

nominally Gaussian background distributiuon GB contaminated by an interfering

component Gt with higher variance. This model can represent the background

noise in radar and sonar communication where clutter and reverberation gives rise

to occasional impulses in an otherwise Gaussian ambient noise. The variance of the

overall PDF is

a 2  E(1 O2)a + a 2  (44)

Simulations were carried out with a = 1, ai = 100 and E = 0.1. The resulting

variance is a2 = 10.9. The AR process was generated by passing a white mixed-

Gaussian process through a filter, allowing sufficient time for the transients to decay.

The white process was generated by randomly selecting from two mutually inde-

pendent zero-mean white Gaussian processes with PDFs GB and G on the basis

of a series of Bernoulli trials with probability of success C. Thus a random variable

could be expected to come from the background population for (1 - e) fraction of

the time and from the contaminating population for e fraction of the time. aB and

a were assumed to be known while E was assumed unknown. E is linearly related

to a2 by (44). Estimating E is therefore equivalent to estimating a2 .

Table B shows the sample means and sample variances of the unweighted LS

estimators of a, A, w and a 2 obtained by solving (22), (4) and (21). The performance

is poor, as expected. The variance of the LS estimators of a, ja and v are larger

than the corresponding CR bound by roughly a factor of 10. This confirms the

well-known result that the asymptotic variance of these LS estimators are given by

the "Gaussian" CR bound irrespective of the driving noise PDF [Anderson 1971].

The "Gaussian" CR bound, which assumes the PDF to be Gaussian, is described

by (15b), (15a) and (12a) with a 2 If = I and is clearly larger than the true CR

bound by a factor of a2 I. This factor, which is approximately 10 for the selected

PDF parameters, explains the discrepancy between the last two columns of Table

B. The results are based on 500 experiments, each conducted with 500 data points.
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Table C summarizes the performance of the two-stage LS estimator obtained

by solving (23), (4) and (26). The variances of the estimators of a, U and V are close

to the CR bound. This improvement of performance is in accordance with similar

results reported by the authors in the zero-mean case [Kay and Sengupta, 1987].

The variance of the estimator of a 2 continues to be much larger than the CR bound.

This is to be expected, since the estimator given by (21) is not an approximation

of the MLE in any sense, the property of asymptotic efficieilcy of the MLE being

inapplicable. The bias of all the estimators in Table C appear to be significantly

less than the bias of their counterparts in Table B.

The same AR(4) processes were used for simulations of the performance of the

GLRT and Rao detectors. A single signal component of the form of (42) was chosen.

,4 was adjusted to yield different values of SNR in the following way. The SNR as

defined in the previous section is

NSNR s Tso 1 2 S2 =(N - p)v 2SNR=sors°=v2  Z ,

n=p+l

Using (4),

SNR = (N - 4)/z2

1-a + a 2 - a 3 + a 4

Therefore
1  + a2 - a3 + a4)SNR (

P= N-4 (5

Thus A was calculated for a given process such as to produce a desired SNR. The

number of data points (N) was chosen to be 50. A probability of false alarm

PFA = 0.01 was used to evaluate the detection performance. The value of -y'

necessary for this is 6.635, as obtained from the tables of central X2 distribution

with one degree of freedom. The asymptotic p formance of the GLRT or Rao

detector is described by (32b) and (34b). The noncentrality parameter, as obtained

from (38) or (39) is

A = SNR[a2If]

A is calculated for each value of the SNR and the theoretical or asymptotic perfor-

mance is evaluated accordingly.
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Since the signal has only one component, the Rao detector described by (41),

which in this case is equivalent to (40), simplifies to [Kay and Sengupta 1986, CI

I:-+ E aj=o- f" -j~nt = (+ ) ( 2 (46)

If (6 2) ( a~s )2

where the dependence of If on 62 is noted. R was computed from the above

expression for 500 different sets of data, each of length N = 50, for a given SNR.

The theoretical value of the threshold -y' was used. The number of times tR exceeded

^Y', divided by 500 (the number of experiments) was regarded as the experimental

value of the probability of detection. The MLE of the AR filter parameters required

by (40) under )lo were replaced by the corresponding two-stage LS estimators.

The GLRT detector is given by (36b) with p = 4, q = 1. The MLE's were again

replaced by the two-stage LS estimators.

Figure 3(a) plots the probabilities of detection of the Rao detector and the

GLRT detector along with the theoretical performance vs. SNR for noise process I.

Figure 3(b) plots the same for noise process 11. The performance of the GLRT de-

tector is very close to the theoretical performance. This confirms that a sample size

of N = 50 is sufficient for the theoretical predictions of performance of the GLRT

to be valid. Replacement of the MLEs by the computationally simple two-stage

LS estimators appears to be a reasonable approximation. The performance of the

Rao detector is equivalent to that of the GLRT detector for low SNR. However its

performance deteriorates for stronger signals. The Rao detector essentially approx-

imates a difference by a derivative [Rao 1973]. A large sample size and closeness of

the two hypothses are crucial to this approximation. The failure of the Rao test at

moderate SNR is an evidence of its inapplicability for short sample sizes.

VI. Conclusions

Two models of non-zero mean non-Gaussian AR processes were considered.

The Cramer-Rao bounds for the parameters of each model were presented. A

mismatch of the signal spectrum and the noise PSD favors precise estimation of the

signal parameters. The CR bounds for the estimators of the AR filter parameters do
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not depend on the signal in the case of model (2). Estimation of these parameters

in model (1) may be at least as precise, while a properly designed signal can reduce

the CR bounds. In each case, the CR bounds for thse two sets of parameters are

less in the case of a non-Gaussian PDF compared to a Gaussian PDF.

A two-stage LS estimator was proposed for the estimation of the signal coeffi-

cients and the AR filter parameters. This is an extention of a technique proposed

earlier for zero-mean processes and is derived as an approximation to the MLE.

The two-stage LS estimator provides a closed form solution to a set of approxi-

mated likelihood equations. This technique allows any signal shape for model (1),

while for model (2) only permissible signal components are damped or undamped

sinusoids, exponentials and dc.

The two-stage LS estimator was then applied to the GLRT detection of signals

in colored non-Gaussian noise. Two mixing models were considered and the GLRT

detector was derived for each one of them. The Rao detector for these problems

were also presented. Computer simulations indicated the success of the GLRT and

the failure of the Rao detector for moderate SNR and short sample sizes.

APPENDIX

Derivation of the Cramer Rao Bounds

The first step to determine the CR bounds is the evaluation of the information

matrix for the parameter vector # defined by (9) for process (1). One can proceed

from (8) neglecting the second term on the right hand side.

[82 lnfc(x) 1
1# -E I ap #

N' (a In fg~ (A.1)

E ## T

n=p+l

E 

T(inf(u)) 

01nf(u,)
=p+l24

~0 I ,) 0I 't (A. 1)

n---p+l a
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where g is the PDF of the driving noise samples scaled by c,

g(t) = 0f(at) (A.2)

so that g(t) always has unity variance. The partial derivatives are obtained as

o , I(n) ( or(- ) , 1 = 1,2,. ,q (A .3)

a In ( 19 ( ) ()
oon j =g ) 1,__ , 1= p (A.4)

a0n(Cg(2)) 1 [ + (A.5)

Note that

__(_) f _(u n) f(L)
C g] (un)) f (un)

Hence

E E- 21 I f (A .6

where

[ (ln u) 2]

Furthermore

E g- = 0 (A.7)

(00
-] unf'(Ununu

- uff(un) -00 - f(un)dun

- 1(A.8)
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Entries of the information matrix can be readily obtained from (A.3)-(A.5) using

(A.6)-(A.8) and a few other trivial identities such as the expectation of an odd

function being zero.

E[(alnf(x:)) (&l1nf, (x) - g QL) 2E

= Ifs(j)Ts(j)

where s(k) = 8 (k) o(k) 2 (k) I T k= 1,2,. ,q. Therefore

[E(9 In f,(x) In hf,(x) )T]1 fST A9
£v (98L V-IST(A)

using the definition S =s (1) S(2) ... S(q)

[(Infc(x)) (a Inf,(x))= N TE[. \ -- =-If : S(i)mn-i = -Ifs(i) mj

n=p+l

where
Mn =

mj = [mp+-j mp+ 2- mNj T , j = 1,2,...

It follows that

where M = [in m 2 -. " mpl.

N4[(( 

(n 

f)(x)) 
a ln .1

Hence
( E [u ) 21J I r (~ l

26
( - nOgOg 

Y -



Er[(alnfC(x)) dlnf,(x)9a -3a I:yg,) nin,n=p+ 1 o(7

N
If

n=p+l

N

If 1 E((x,._, - (',_- M,,j)

n=p+l

+ mn-iMn-j]

=If [(N - p)[C],,j + mTmi]

where C is the p x p covariance matrix of the data. Note that X,, - m, is a zero-

mean wide sense stationary (WSS) process even though Xn has a time-varying mean.

From the above equation it follows that

E [(Onfc(x)) (aInfc(x) )T]=If[(N - p)C +MTM (A.12)

Ni (" ) 2 1 N E

n=p+l ) I1 N 21 N rE ENi jZ E unj EfXn..,] - 1ZE ((a))jExj

Therefore 2(o-
E (alnfa(x)) (nfx) ) =OP (A.13)

[(a f, (x) )21 N44U (IL) +1]12]• E a--- E 1 u,- 1

n= P+ [E[= 0'(1 or)]

= (N - p)Z2 (A.14)
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where

11 1E [(u -lnf)J i
(10) follows directly from equations (A.9)-(A.14). The Cramer Rao bounds are

obtained from the inverse of (10). (12c) results readily from the block diagonal

property of the matrix. If S and M are scaled by a and C is scaled by a2 , then

UAlf can be pulled out from the four blocks of I# corresponding to v and a. One

can then make use of the result

A B)- = ( (A - BC'D)-1  -A-B -D-B
D C -(C -DA-'B)-'DA - ' (C -DA-)

As a consequence, the lower bound on Cov(P) is

[SnTS n - STM[(N p)Cn + M n]TM,-MT Sn-02 I f

' [ I - M [(N - pC ) - MT TMnj11M ] s

a2I I
= 1 [SAT r + M"[_M,TMh + (N )~+ M"TM"] MT] -orj I I - p)n_1n

-=.-- [ST [I + Mn[(N - p)Cl1MT - (A.15)

using the identity

[A + BCD]- ' = A-' - A-'B[DA-'B + C-']-'DA- ' ,

(A.15) is identical with (12a). Finally, using the inversion formula for block matrices

once again, the lower bound on Cov(A) is

2L [(N - p)C, + MTM - sn(s s,) M -oI

- [(N- p)C, + MT [I- ST(Sn T-Sn)1S] Mnj (A.16)

which is the same as (12b).
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Table A: Parameters of the AR processes used for simulation

a a2 (3 a 4  poles

0.7Texpf±i27r(o.12)I
-1.352 1.338 -0.662 0.240 0.7exp(±,27r(0.210.7 exp[±j2-r(0.21))

0.98 exp[±j2,,(.11)j
11 -2.760 3.809 -2.654 0.924 0.98 exp[±,x(.14)10.98 exp[±j27r(0.14)1

Table B: Performance of the unweighted LS Estimator, N = 500

True Sample Sample Cramer-Rao

value mean Bias 2  variance bound

a, -1.3520 -1.3504 2.682 x 10-6 1.9277 x 10- 3  2.0697 x 10 - 4

a2 1.338 1.3377 8.862 x 10- 7  4.6654 x 10- 3  5.1217 x 10 - 4

a 3  -0.6620 -0.6621 3.434 x 10" 4.8690 x 10- 3  5.1217 x 10- 4

a4 0.2400 0.2425 6.081 x 10-8 1.7834 x 10 -
3 2.0697 x 10- 4

0.1000 0.0997 6.625 x 10- 1.1229 x 10 - 3  1.1353 x 10- 4

0.4592 0.4578 1.899 x 10 - 1 2.3824 x 10- 2  2.3959 x 10- 3

o2 10.9000 10.8280 5.186 x 10 - 3  6.0815 0.6323

at -2.7600 -2.7544 3.134 x 10- 6 3.1395 x 10- 4  3.2114 x 10-6
a2 3.8090 3.7944 2.124 x 10- 4  1.6867 x 10

- 3  1.5815 x 10 - 4

II a 3  -2.6540 -2.6394 2.232 x 10
- 4  1.7395 x 10- 3  1.5815 x 10 - 4

a4 0.9240 0.9174 4.391 x 10 - 6 3.7182 x 10 - 4  3.2114 x 10 - 5
A 0.1000 0.0999 1.323 x 10- 8 1.9070 x 10- 4  1.9266 x 10- 6

l 1.1147 1.1092 3.052 x 10- " 2.3450 x 10-2 2.3939 x 10
- 3

10.9000 10.8245 5.703 x 10-
3 6.0833 0.6323



Table C: Performance of the Two-stage LS Estimator, N = 500

True Sample 6ample Cramer-Rao
value mean Bias2  variance bound

a, -1.3520 -1.3512 6.379 x 10 - 7  2.7939 x 10 - 4  2.0697 x 10- 4

a 2  1.338 1.3369 1.276 x 10-6 6.9665 x 10- 4  5.1217 x 10- 4

a3  -0.6620 -0.6616 1.987 x 10- 7 6.8015 x I0 - 4  5.1217 x 10- 4

I a4  0.2400 0.2401 3.283 x 10- 9  2.4486 x 10- 4  2.0697 x 10 - 4

0.1000 0.0996 1.495 x 10 - 7 1.2365 x 10- 4  1.1353 x 10 - 4

u 0.4592 0.4572 4.131 x 10- 6  2.6284 x 10- 3  2.3959 x 10- 3

2 10.9000 10.9063 3.987 x 10 - 5 6.1731 0.6323

a, -2.7600 -2.7588 1.403 X 10- 6  4.1403 x 10- 6  3.2114 x 10- 5

a2 3.8090 3.8058 1.040 X 10- r 2.1812 X 10- 4  1.5815 x 10- 4

II a 3  -2.6540 -2.6506 1.151 x 10- 5 2.2206 x 10- 4  1.5815 x 10 - 4

a4  0.9240 0.9224 2.410 x 10- 6  4.6890 x 10- 5 3.2114 x 10- 5

A 0.1000 0.0998 2.766 x 10-8 2.1106 x 10- 5 1.9266 x 10 - 5
v, 1.1147 1.1119 7.776 x 10- 6 2.6332 x 10- 3  2.3939 x 10- 3

a 10.9000 10.9076 5.894 x 10 - 5 6.1666 0.6323

0
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A(Z)

A(Z) =I+ZjZ-

Figure 1(a): AR model for process (1)

Un A Z n

A(Z) = + aj-J

A'= TSn

Figure 1(b): AR model for process (2)
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Figure 3(b): Performance of the GLRT and Rao detectors, process II


